Unsupervised and supervised data classification via nonsmooth and global optimization
نویسندگان
چکیده
منابع مشابه
Unsupervised and supervised data classification via nonsmooth and global optimization1
We examine various methods for data clustering and data classification that are based on the minimization of the so-called cluster function and its modifications. These functions are nonsmooth and nonconvex. We use Discrete Gradient methods for their local minimization. We consider also a combination of this method with the cutting angle method for global minimization. We present and discuss re...
متن کاملEvaluating the Effectiveness of Supervised and Unsupervised Classification Methods in Monitoring Regs (Case Study: Jazmourian Reg)
Due to its mobility and ability to move and its direct impact on residential areas and various developmental activities, the Ergs are of major importance in the desert areas, so monitoring of those is very important. Considering that the use of supervised and unguarded methods is considered as one of the most common methods in determining and monitoring land uses, in this research, the accuracy...
متن کاملOptimization of Text Classification Using Supervised and Unsupervised Learning Approach
Text Classification, also known as text categorization, is the task of automatically allocating unlabeled documents into predefined categories. Text Classification means allocating a document to one or more categories or classes. The ability to accurately perform a classification task depends on the representations of documents to be classified. Text representations transform the textural docum...
متن کاملSupervised and Unsupervised Text Classification via Generic Summarization
This paper presents a new generic text summarization method using Non-negative Matrix Factorization (NMF) to estimate sentence relevance. Proposed sentence relevance estimation is based on normalization of NMF topic space and further weighting of each topic using sentences representation in topic space. The proposed method shows better summarization quality and performance than state of the art...
متن کاملAnt colony optimization-based supervised and unsupervised band selections for hyperspectral urban data classification
Band selection (BS), which selects a subset of original bands that contain the most useful information about objects, is an important technique to reduce the dimensionality of hyperspectral data. Dimensionality reduction before hyperspectral data classification can reduce redundancy information and even improve classification accuracy. We propose BS algorithms based on an ant colony optimizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Top
سال: 2003
ISSN: 1134-5764,1863-8279
DOI: 10.1007/bf02578945